Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
S Afr J Infect Dis ; 37(1): 339, 2022.
Article in English | MEDLINE | ID: covidwho-1786163

ABSTRACT

Effective risk communication is essential for outbreak mitigation, as recently highlighted during the coronavirus disease 2019 (COVID-19) pandemic. Hand hygiene is one of the proposed public health interventions to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) acquisition and transmission along with social distancing, improved ventilation, environmental cleaning, and wearing of masks. Improving hand hygiene practices in the community requires an understanding of the socio-behavioural context. This cross-sectional community survey in Soweto identified gaps in hand hygiene, which can inform appropriate messaging at the community level. Only 42% of survey respondents practiced adequate hand hygiene. Tailored educational messaging should be targeted at young adults in particular, and the importance of soap for hand hygiene must be emphasised for all age groups. Risk communication should expand to focus on preventing multiple infectious diseases during and beyond the COVID-19 pandemic.

2.
BMC Infect Dis ; 21(1): 539, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1261266

ABSTRACT

BACKGROUND: In sub-Saharan Africa, acute respiratory infections (ARI), acute gastrointestinal infections (GI) and acute febrile disease of unknown cause (AFDUC) have a large disease burden, especially among children, while respective aetiologies often remain unresolved. The need for robust infectious disease surveillance to detect emerging pathogens along with common human pathogens has been highlighted by the ongoing novel coronavirus disease 2019 (COVID-19) pandemic. The African Network for Improved Diagnostics, Epidemiology and Management of Common Infectious Agents (ANDEMIA) is a sentinel surveillance study on the aetiology and clinical characteristics of ARI, GI and AFDUC in sub-Saharan Africa. METHODS: ANDEMIA includes 12 urban and rural health care facilities in four African countries (Côte d'Ivoire, Burkina Faso, Democratic Republic of the Congo and Republic of South Africa). It was piloted in 2018 in Côte d'Ivoire and the initial phase will run from 2019 to 2021. Case definitions for ARI, GI and AFDUC were established, as well as syndrome-specific sampling algorithms including the collection of blood, naso- and oropharyngeal swabs and stool. Samples are tested using comprehensive diagnostic protocols, ranging from classic bacteriology and antimicrobial resistance screening to multiplex real-time polymerase chain reaction (PCR) systems and High Throughput Sequencing. In March 2020, PCR testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and analysis of full genomic information was included in the study. Standardised questionnaires collect relevant clinical, demographic, socio-economic and behavioural data for epidemiologic analyses. Controls are enrolled over a 12-month period for a nested case-control study. Data will be assessed descriptively and aetiologies will be evaluated using a latent class analysis among cases. Among cases and controls, an integrated analytic approach using logistic regression and Bayesian estimation will be employed to improve the assessment of aetiology and associated risk factors. DISCUSSION: ANDEMIA aims to expand our understanding of ARI, GI and AFDUC aetiologies in sub-Saharan Africa using a comprehensive laboratory diagnostics strategy. It will foster early detection of emerging threats and continued monitoring of important common pathogens. The network collaboration will be strengthened and site diagnostic capacities will be reinforced to improve quality management and patient care.


Subject(s)
Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Mass Screening , Sentinel Surveillance , Bayes Theorem , Burkina Faso , Case-Control Studies , Cote d'Ivoire , Democratic Republic of the Congo , Fever/epidemiology , Fever/microbiology , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/microbiology , Humans , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , South Africa
3.
Lancet Infect Dis ; 20(7): 851-863, 2020 07.
Article in English | MEDLINE | ID: covidwho-31312

ABSTRACT

BACKGROUND: A monovalent, parenteral, subunit rotavirus vaccine was well tolerated and immunogenic in adults in the USA and in toddlers and infants in South Africa, but elicited poor responses against heterotypic rotavirus strains. We aimed to evaluate safety and immunogenicity of a trivalent vaccine formulation (P2-VP8-P[4],[6],[8]). METHODS: A double-blind, randomised, placebo-controlled, dose-escalation, phase 1/2 study was done at three South African research sites. Healthy adults (aged 18-45 years), toddlers (aged 2-3 years), and infants (aged 6-8 weeks, ≥37 weeks' gestation, and without previous receipt of rotavirus vaccination), all without HIV infection, were eligible for enrolment. In the dose-escalation phase, adults and toddlers were randomly assigned in blocks (block size of five) to receive 30 µg or 90 µg of vaccine, or placebo, and infants were randomly assigned in blocks (block size of four) to receive 15 µg, 30 µg, or 90 µg of vaccine, or placebo. In the expanded phase, infants were randomly assigned in a 1:1:1:1 ratio to receive 15 µg, 30 µg, or 90 µg of vaccine, or placebo, in block sizes of four. Participants, parents of participants, and clinical, data, and laboratory staff were masked to treatment assignment. Adults received an intramuscular injection of vaccine or placebo in the deltoid muscle on the day of randomisation (day 0), day 28, and day 56; toddlers received a single injection of vaccine or placebo in the anterolateral thigh on day 0. Infants in both phases received an injection of vaccine or placebo in the anterolateral thigh on days 0, 28, and 56, at approximately 6, 10, and 14 weeks of age. Primary safety endpoints were local and systemic reactions (grade 2 or worse) within 7 days and adverse events and serious adverse events within 28 days after each injection in all participants who received at least one injection. Primary immunogenicity endpoints were analysed in infants in either phase who received all planned injections, had blood samples analysed at the relevant timepoints, and presented no major protocol violations considered to have an effect on the immunogenicity results of the study, and included serum anti-P2-VP8 IgA, IgG, and neutralising antibody geometric mean titres and responses measured 4 weeks after the final injection in vaccine compared with placebo groups. This trial is registered with ClinicalTrials.gov, NCT02646891. FINDINGS: Between Feb 15, 2016, and Dec 22, 2017, 30 adults (12 each in the 30 µg and 90 µg groups and six in the placebo group), 30 toddlers (12 each in the 30 µg and 90 µg groups and six in the placebo group), and 557 infants (139 in the 15 µg group, 140 in the 30 µg group, 139 in the 90 µg group, and 139 in the placebo group) were randomly assigned, received at least one dose, and were assessed for safety. There were no significant differences in local or systemic adverse events, or unsolicited adverse events, between vaccine and placebo groups. There were no serious adverse events within 28 days of injection in adults, whereas one serious adverse event occurred in a toddler (febrile convulsion in the 30 µg group) and 23 serious adverse events (four in placebo, ten in 15 µg, four in 30 µg, and five in 90 µg groups) occurred among 20 infants, most commonly respiratory tract infections. One death occurred in an infant within 28 days of injection due to pneumococcal meningitis. In 528 infants (130 in placebo, 132 in 15 µg, 132 in 30 µg, and 134 in 90 µg groups), adjusted anti-P2-VP8 IgG seroresponses (≥4-fold increase from baseline) to P[4], P[6], and P[8] antigens were significantly higher in the 15 µg, 30 µg, and 90 µg groups (99-100%) than in the placebo group (10-29%; p<0·0001). Although significantly higher than in placebo recipients (9-10%), anti-P2-VP8 IgA seroresponses (≥4-fold increase from baseline) to each individual antigen were modest (20-34%) across the 15 µg, 30 µg, and 90 µg groups. Adjusted neutralising antibody seroresponses in infants (≥2·7-fold increase from baseline) to DS-1 (P[4]), 1076 (P[6]), and Wa (P[8]) were higher in vaccine recipients than in placebo recipients: p<0·0001 for all comparisons. INTERPRETATION: The trivalent P2-VP8 vaccine was well tolerated, with promising anti-P2-VP8 IgG and neutralising antibody responses across the three vaccine P types. Our findings support advancing the vaccine to efficacy testing. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Dose-Response Relationship, Immunologic , Immunogenicity, Vaccine , Rotavirus Vaccines/adverse effects , Rotavirus Vaccines/immunology , Rotavirus/immunology , Vaccines, Subunit , Adult , Antibodies, Neutralizing , Antibody Formation , Child, Preschool , Double-Blind Method , Female , Humans , Immunization , Infant , Male , Middle Aged , Rotavirus Vaccines/genetics , South Africa , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL